Draft

Guidelines For the Conduct of Test for Distinctiveness, Uniformity & Stability on

Lemongrass [*Cymbopogon flexuosus* L.]

Protection of Plant Varieties and Farmers' Rights Authority (A Statutory Body created by an Act of Parliament) Government of India, New Delhi

CONTENTS

S. No	Particulars
I.	Subject
II.	Material required
III.	Conduct of tests
IV.	Methods and observations
V.	Grouping characteristics
VI.	Characteristics and symbols
VII.	Table of characteristics
VIII.	Explanations for the Table of characteristics
IX.	Working Group details
X.	Name of DUS Test Centre

I. Subject

These test guidelines shall apply to all vegetatively propagated varieties and parental lines of Lemongrass (*Cymbopogon flexuosus* L.).

II. Material required

- 1. The Protection of Plant Varieties and Farmers' Rights Authority (PPV & FRA) shall decide when, where and in what quantity and quality of the planting material are required for testing a variety denomination applied for registration under the Protection of Plant Variety and Farmers' Rights (PPV & FR) Act, 2001. Applicants submitting such planting from a country other than India shall make sure that all customs and quarantine requirements stipulated under relevant national legislations and regulations are complied with.
- 2. The planting material shall be supplied from pure 8– 10 months old plants, visibly healthy and not lacking in vigour or affected by any pest or disease. It should be obtained from *in- vivo* propagation and shall possess highest genetic purity, uniformity, sanitary and phyto-sanitary standards.
- **3.** The planting material shall not have been subjected to any chemical or bio-physical treatment unless the PPV&FR Authority allows or request such treatment. If it has been treated full details of the treatment must be given. The sets with healthy slips shall be carefully packed without damaging lower rooted portions.
- The minimum quantity of planting material to be provided by the applicant shall be
 150 fresh viable slips per centre.

III. Conduct of tests

- The minimum duration of DUS tests shall be of two independent similar growing seasons. The test shall normally be conducted at least at two test locations for new category and one testing season for extant/ farmer's category.
- 2. If any essential characteristics of the candidate variety are not expressed observation/ measurement at these locations, the variety shall be considered for further examination at another appropriate test site or under special test protocol on request expressed by the applicant.
- **3.** The field tests shall be carried out under conditions favouring normal growth and expression of all test characteristics. The size of the plots shall be such that plants or parts of plants could be removed for measurement and observation without prejudicing the other observations on the standing plants till the end of the growing period. Each test shall include at least a **minimum of 80 plants**. Separate

plots for observation and for measurement can only be used if they have been subjected to similar environmental conditions. All the replications shall be sharing similar environmental conditions of the test location.

4. The test plot design shall be as follows-

Number of rows	:4
Row length	: 6 m
Row to row distance	: 60 cm
Plant to plant distance	: 60 cm
Number of replications	: 3

- **5.** Observations shall not be recorded on plants in border rows. Any kind of Plant Promoting Growth Hormones should not be used throughout the growth period (vegetative/ flowering period).
- 6. Additional tests for special purpose shall be established by the PPV & FR Authority.

IV. Methods and observations

- 1. The characteristics described in the Table of characteristics (refer section VII) shall be used for the DUS testing of varieties.
- 2. For the assessment of Distinctiveness and Stability, observations shall be made on at least 10 slips/ replication, unless otherwise indicated (In Lemongrass, the above ground part known as 'slip' is a cluster of culms derived from a single plant of Lemongrass, which is analogous to a single plant.
- 3. For the assessment of Uniformity of single lines a population standard of 1% with an acceptance probability of 95% shall be applied. In the case of a sample of 80 plants, the number of aberrant plants or parts of plants shall not exceed one.
- 4. For the assessment of all colour characteristics, the latest Royal Horticultural Society (RHS) colour chart shall be used.
- 5. All observations on slips shall be made at mid height of the fully developed crop.
- 6. All observations on nodes and internodes shall be made at mid height of the fully developed crop.
- 7. All observations on the leaf blade and leaf sheath shall be made on 3rd or 4th leaf below the "Top Visible Dewlap" (TVD) leaf.

Methodology adopted for recording of observations for Qualitative and Quantitative characters.

S. No	Character	Methodology			
1	Vegetative plant	Vegetative plant height was measured in centimetre from			
	height	ground level to the tip of the highest leaf of the plant on			
		maturity by a meter scale.			
2	Plant habit	The growth habit of the plant was visually assessed from			
		the altitude of the leaves and tillers. The angle formed by			
		was used.			
3	Leaf length (cm)	Leaf length was measured in centimetre from just above			
		the basal sheath to the tip of the lamina.			
4	Leaf breadth (cm)	Leaf breadth was measured in centimetre at the middle			
		portion of the lamina.			
5	Leaf drooping	The drooping behaviour of the crop was determined by			
	behaviour	observing the bending of leaf downwards.			
6	Leaf midrib colour	The colour of the leaf midrib was observed and matche			
		with the RHS colour chart.			
7	Leaf sheath colour	Colour of the leaf sheath was observed and recorded at			
		matured stage as- light green, dark green and normal green			
		and matched with RHS colour chart.			
8	Length of basal	This measure was taken from the base of the plant to the			
	sheath	beginning of the lamina.			
9	Colour of basal	Colour of the basal sheath was observed and recorded with			
	sheath	naked eye at matured stage as- green and red and matched			
		with RHS colour chart.			
10	Tillers/clump	Number of tillers was counted by the total number of tillers			
		per clump at matured stage.			
11	Stem colour	The colour of the stem was observed and matched with the			
		RHS colour chart.			
12	Internode colour	The colour of the internode was observed and matched			
		with the RHS colour chart.			
13	Auricle colour	The colour of the auricle was observed and matched with			
		the RHS colour chart.			

14	Inflorescence colour	The colour of the inflorescence was observed and matched
		with the RHS colour chart.
15	Length of spike	This measure was taken from a node which emerges from
		the panicle up to tip of the inflorescence and was measured
		in centimetres scale.
16	Inflorescence type	The type of inflorescence was determined by observing the
		arrangement of the cluster of flowers on floral axis.
17Colour of exposed		This character was visualized and recorded at maturity as-
	stem	deep reddish brown and light yellowish green and matched
		with RHS colour chart.
18	Number of nodes	The number of nodes was counted from the ground level to
		the base of the inflorescence from where spikes emerged.
19	Girth of node	Girth of node was taken with the help of a thread and then
		the thread was measured with the help of scale.
20 Essential oil		Essential oil was extracted using Clevenger apparatus for 3
	quantity	h. The quality of the essential oil was analysed using Gas
		Chromatography FID and GC-MS.

V. Grouping Characteristics

The following characteristics shall be used for grouping Lemongrass varieties.

a) Plant habit (characteristics 2)

b) Leaf drooping behaviour (characteristics 5)

c) Inflorescence type (characteristics 16)

Grouping characteristics may also be used in the selection of reference varieties to be grown in the trial with candidate varieties

VI. Characteristics and symbols

- 1. To assess Distinctiveness, Uniformity and Stability, the characteristics given in the Table of characteristics (Section VII) shall be used.
- 2. Notes (1 to 9) shall be given for each state of expression for different characteristics for the purpose of electronic data processing.

3. Legend:

(*) Characteristics that shall be observed during every growing season in all the varieties and shall always be included in the description of the variety. In

exceptional cases, whereas the state of expression of any of these characters is not recorded due to environmental vagaries, adequate explanation shall be provided.

(+) is mentioned wherever sketches/ photographs are given. The explanation for the characteristics is provided in (section VIII) for clarity.

- 4. Characteristics containing the following key in the first column of the Table of characteristics shall be examined as indicated below:
 - **QL**: Qualitative characteristic
 - QN: Quantitative characteristic
 - **QL:** Qualitative characteristics are those that are expressed in discontinuous states. These states are self-explanatory and independently meaningful. All states are necessary to describe the full range of the characteristic and every form of expression can be described by a single state. As a rule, the characteristics are not influenced by environment.
 - **QN:** Quantitative characteristics are those where the expression covers the full range of variation from one extreme to the other. The expression can be recorded on a one-dimensional, continuous or discrete, scale. The range of expression is divided into a number of states for the purpose of description.
- 5. A decimal code number in the sixth column of Table of characteristics indicates the optimum stage for observation of each characteristic during the growth and development of plant. The relevant growth stages for assessment of each characteristic corresponding to the codes (days after planting) are given below:

Code	Growth stage
60	End of fully growth stage
90	Maturity stage (Flowering time)
100	Harvest stage

- 6. Type of assessment of characteristics indicated in column six of Table of characteristics VII is as follows:
- MG: Measurement by a single observation on a group of plants or parts of plants
- MS: Measurement of a number of individual plants or parts of plants
- VG: Visual assessment by a single observation on a group of plants or parts of plants
- VS: Visual assessment by observation of individual plants or parts of plants

VII. Table of characteristics

S.	Characteristics	States	Notes	Example	IC No	Stage of	Types of
No				Variety		observat	Assessme
•						ion	nt
1	2	3	4	5		6	7
-	X X 1				10.00000	CO	
1.	Vegetative plant	Short (<75 cm)	3	RRLJM-404,	IC-0626693	60	MS
(+)	height (cm)		~	CKP 25	10.000000		
QN		Medium (75-150	5	RRLJM-215	IC-0626580		
		cm)	7	Krishna	10.000000	-	
		1 all (>150-200 cm)	/	RRLJM-228	IC-0626592	-	
2	D1 (11)	Very tall (>200 cm)	9	RRLJM-285	IC-0626643	00	NC
2.	Plant habit	Erect	3	RRLJM-260	IC-0626621	90	VG
(+)		Semi erect	5	RRLJM-304	IC-0626652	-	
QL		Drooping	1	RRLJM-284	IC-0626642		
3.	Leaf length (cm)	Short (<50 cm)	3	RRLJM-401	IC-0626661	90	MS
(+)		Medium (50-100	5	RRLJM-272	IC-0626631		
QN		cm)				-	
		Long (>100 cm)	7	RRLJM-524	IC-0626716		
4.	Leaf breadth	Narrow (<1 cm)	3	RRLJM-270	IC-0626629	90	MS
(+)	(cm)			CKP 25		-	
QN		Medium (1-2 cm)	5	RRLJM-256	IC-0626617	-	
_		Broad (>2 cm)	7	RRLJM-216	IC-0626581		
5.	Leaf drooping	Erect	3	RRLJM-620	IC-0626765	90	VG
(+)	behaviour	Semi erect	5	RRLJM-605	IC-0626750	-	
QL		Drooping	7	RRLJM-679	IC-0626824		
6.	Leaf midrib	Strong Yellow	1	RRLJM- 523	IC-0626715	90	VS
(+)	colour	Green (RHS- 143 C)				-	
QL		Light Bluish Green (RHS-133 C)	3	RRLJM- 537	IC-0626729		
7.	Leaf sheath	Strong Yellow	3	RRLJM- 3H8	IC-	90	VS
(+)	colour	Green (RHS-143 B)			RRLJ3H8		
QL		Strong Yellow	5	RRLJM-438	IC-		
		Green (RHS 144 C)			RRLJ5H3		
		Deep Pink (RHS	7	RRLJM- 285	IC-0626643		
		180 D)					
8.	Length of basal	Short (<10 cm)	3	RRLJM 543	IC-0626735	90	MS
(+)	sheath (cm)	Medium (10-30 cm)	5	RRLJM 221	IC-0626586		
QN		Long (>30 cm)	7	RRLJM 250	IC-0626612	1	
9.	Colour of basal	Strong Yellow	3	RRLJM- 259	IC-0626620	90	VS
(+)	sheath	Green (RHS-143 B)					
QL		Greyish Brown	7	RRLJM- 284	IC-0626642		
		(RHS- 166 A)					
10.	Tillers per	Sparse (<40)	3	RRLJM-444	IC-0626696	90	MS
(+)	clump	Medium (40-80)	5	RRLJM-522	IC-0626714		
QN		Profuse (>80)	7	RRLJM-412	IC-0626670	1	

11. (+)	Stem colour	Light Greenish Yellow (RHS 4 B)	3	RRLJM- 259	IC-0626620	90	VS
QL		Vivid Red (RHS 46	5	RRLJM- 273	IC-0626632		
		Light Purplish Pink (RHS 55 C)	7	RRLJM- 248	IC-0626610		
12.	Internode colour	Light Greenish Yellow (RHS 6 D)	3	RRLJM- 201	IC-0626568	90	VS
QĹ		Vivid Red (RHS 45 C)	5	RRLJM- 248	IC-0626610		
		Greyish Reddish Brown (RHS 200 B)	7	RRLJM- 215	IC-0626580		
13. (+)	Auricle colour	Strong Yellow Green (RHS 143 B)	3	RRLJM- 259	IC-0626620	90	VS
QL		Vivid Red (RHS 46 C)	5	RRLJM- 720	IC-0626852		
		Deep Purple (RHS 83 B)	7	RRLJM- 829	IC-0626874		
14. (+)	Inflorescence colour	Strong Yellow green (RHS- N144 C)	5	RRLJM-634	IC-0626779	90	VG
QL		Greyish Red (RHS- 182 B)	7	RRLJM-659	IC-0626804		
15.	Length of spike	Short (<50 cm)	3	RRLJM 440	IC-0626693	90	MS
(+) QN	(cm)	Medium (50-100 cm)	5	RRLJM 230	IC-0626594		
-		Long (>100 cm)	7	RRLJM 534	IC-0626735		
16.	Inflorescence	Loose	3	RRLJM-102	IC-0626990	100	VG
(+)	type	Semi-compact	5	RRLJM-712	IC-0626844		
OL		Compact	7	RRLJM-854	IC-0626888		
17. (+)	Colour of exposed stem	Light Greenish Yellow (RHS- 8 C)	5	RRLJM-655	IC-0626800	100	VS
QĹ	1	Moderate Red (RHS-182 A)	7	RRLJM-5H3	IC-RLJ5H3		
18.	Number of	Low (<4)	3	RRLJM-543	IC-0626735	100	MS
QN	nodes	Medium (4-6)	5	RRLJM-601	IC-0626754		
		High (>6)	7	RRLJM-420	IC-0626677		
19.	Girth of node	Thin (<1 cm)	3	RRLJM-434	IC-0626688	100	MS
(+)		Medium (1-2 cm)	5	RRLJM-285	IC-0626643		
QN		Thick (>2 cm)	7	RRLJM-420	IC-0626677		
20.	Essential oil	Low (<0.5%)	3	RRLJM-546	IC-0626737	100	MG
QN	percentage	Medium (0.5-0.8%)	5	Krishna			
	-	High (>0.8%)	7	Jor Lab-L8			
				CKP 25			
				CIM-Shikhar			
21.	Major compound	d in the essential oil		1			
21.	Citral	Low citral	3	RRLJM-201	IC-0626568	100	MG
		•		•	•		

(a).		(≤45%)					
QL		Moderate citral	5	BLI-ARUN	-		
		(>45-65%)					
		High citral	7	RRLJM-223	-		
		(>65%)		CIM-Shikhar			
				JOR LAB L-			
				8			
21.	Methyl eugenol	Low methyl eugenol	3	RRLJM-602	IC-0626747	100	MG
(b).		(≤50%)					
QL		High methyl	7	RRLJM-634	JOR LAB		
		eugenol (>50%)			L-9		
					INGR18037		
21.	Elemicin	Low elemicin	3	RRLJM-524	IC-0626716	100	MG
(c).		(≤50%)					
QL		High elemicin	7	RRLJM 546	JOR LAB		
		(>50%)			L-10		
					INGR18039		

VII. Explanation for the Table of characteristics

Characteristics 1. Vegetative plant height:

Characteristics 2. Plant habit:

Characteristics 3. Leaf Length (cm):

Characteristics 4. Leaf Breadth (cm):

Characteristics 6. Leaf midrib colour:

Characteristics 7. Leaf sheath colour:

Characteristics 8: Length of basal sheath (cm):

Characteristics 9. Colour of basal sheath:

Characteristics 10. Tillers per clump:

Characteristics 11. Stem colour:

Characteristics 12. Internode colour:

Characteristics 13. Auricle colour:

Characteristics 14. Inflorescence colour:

(79) Short Medium Long Short (<50 cm) (3) Medium (50-100 cm) (5) Long (>100 cm) (7)

Characteristics 15: Length of spike (cm):

Characteristics 16. Inflorescence type:

Characteristics 17. Colour of exposed stem:

20. Essential oil quality and quantity: Essential oil was extracted using Clevenger apparatus for minimum of 3 h. The quality of the essential oil was analysed using Gas Chromatography and GC-MS.

The essential oil content in percentage (w/w) was estimated on fresh weight basis. The essential oil concentration (%) was calculated by the following formula.

Essential oil concentration (%) = $\frac{Amount of essential oil recovered (g)}{Amount of crop biomass distilled (g)} \times 100$

The essential oil extracted from the germplasm were categorized into three broad groups-

Low (0-0.4%): 0.4% (RRLJM 546)

Medium (0.5-0.8%): 0.80% (RRLJM 7); 0.81% (RRLJM 634)

High (>0.8): 1.1% (RRLJM 223); 1.2% (RRLJM 25)

Gas Chromatograph	n (GC-FID an	d GC/MS	conditions used	for essential	oil analysis
-------------------	--------------	---------	-----------------	---------------	--------------

	GC-FID		GC-MS
Instrument	Thermo Scientific TRACE 1110 equivalent model) or	TRACE Ultra Gas Chromatography coupled with an ISQ Mass Spectrometer
			or equivalent model

Column	TG WAY/MSA (60 m \times 0.25 mm i d)	TG WAX/MSA (60 m \times 0.25 mm i.d) or	
Column	10 WAX/MSA ($00 \text{ III} \times 0.23 \text{ IIIIII I.u}$)	10 wAX/WSA ($00 \text{ m} \times 0.23 \text{ mm}$ 1.0) of	
	or equivalent column	equivalent column	
Film thickness	0.25 μm	0.25 μm	
Oven temperature	50°C for 0.5 min	40°C for 2 min	
	300°C at 5°C/min for 10 min	250°C at 5°C/min	
		300°C at 30°C/min for 10 min	
FID temperature	310°C	-	
Injector temperature	280°C	250°C	
Sample injection volume	1 μL	1 μL	
Split ratio	100:1	1:20	
Carrier gas	Nitrogen (0.30 mL/min)	Helium (1 mL/min)	

The compounds were identified by the comparison of retention time of the standard samples (Sigma Aldrich. Hi Media and other companies) with the test samples having same GC conditions and the percentages of the compounds were determined by the area normalization method. In GC–MS, mass spectra of the obtained peaks were identified by comparing with the NIST/ WILEY mass spectra library along with the reported literature and candidate varieties.

GC/MS analysis identified three unique registered lines (ICAR-NBPGR, New Delhi) and the representative chromatograph of the candidate varieties are below:

Citral rich: RRLJM 223 (JOR LAB L-8; INGR16020)

Methyl-eugenol rich: RRLJM 634 (JOR LAB L-9; INGR18037)

Elemicin rich: RRLJM 546 (JOR LAB L-10; INGR18039)

Chromatogram showing retention time of Citral a and Citral b

Chromatogram showing retention time of Elemicin

IX. Working Group details

These test guidelines were developed by the National Core Committee in consultation with the Nodal officer DUS test centre CSIR-NEIST, Jorhat and Task Force (02/2023) constituted by the PPV&FR Authority.

Team of the Nodal centre

- 1. Dr Mohan Lal Principal Scientist (PBG), PI and Nodal Scientist
- 2. Dr Twahira Begum Scientist (PBG), Co-PI and Co-Nodal Scientist

The Members of the Task Force:

1.	Dr. T. S. Mehra Professor & Head MAP Division, College of Horticulture and Forestry (Central Agricultural University) Pasighat- 791102, Arunachal Pradesh	Chairman
2.	Dr. P. Manivel Head and Principal Scientist ICAR-CTRI Regional Station Vedssandur District: Dindugal- 624710, Tamilnadu.	Member
3.	Dr. R. K. Lal Emeritus Scientist & chief Scientist CSIR-Central Institute of Medicinal and Aromatic Plants P.O-CIMAP, Near Kukrail Picnic Spot Lucknow-226015	Member
4.	Dr. S. K. Shukla Ex Chief Scientist, CSIR-NBRI Lucknow, UP	Member
5.	Dr. Sain Dass Ex director, IIMR New Delhi	Member
6.	Dr. R. K. Gautam, Principal Scientist, NBPGR New Delhi.	Member
7.	Dr. Mohan Lal Principal Scientist (Plant Breeding & Genetics) Agrotechnology Technology & Rural Development Division, CSIR-North-East Institute of Science & Technology (CSIR-NEIST) P.O RRL, Jorhat 785006, Assam	PI of DUS Project
8.	Shri R. S. Sengar Deputy Registrar, PPVFRA, New Delhi	Member Secretary

X. Name of DUS testing centre

	Co-nodal centre
CSIR-North-East Institute of Science & C	CSIR-Central Institute of Medicinal and
Technology (CSIR-NEIST), P.O RRL, Jorhat	Aromatic Plants, P.O-CIMAP, Near Kukrail
785006, Assam.	Picnic Spot Lucknow-226015